You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

34 lines
1.1 KiB
Python

import torch
import torch.nn as nn
import pandas as pd
import numpy as np
from sklearn.preprocessing import MinMaxScaler
input_size = 1
hidden_size = 1
num_layers = 2
output_size = 1
class MLP(nn.Module):
def __init__(self, input_size=1, hidden_size=1, num_layers=2, output_size=1):
super(MLP, self).__init__()
# self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
# self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
# self.lstm=nn.RNN(input_size, hidden_size, num_layers, batch_first=True)
self.fc0=nn.Linear(input_size,hidden_size,bias=False)
self.relu = nn.ReLU()
self.fc = nn.Linear(hidden_size, output_size)
nn.init.constant_(self.fc0.weight,0.78)
nn.init.xavier_uniform_(self.fc.weight)
nn.init.zeros_(self.fc.bias)
def forward(self, x):
# out, _ = self.lstm(x)
out0=self.fc0(x)
# out1=self.relu(out0)
# print(f"out{out[0]}")
# print(f"out{out[-1]}")
# out2 = self.fc(out1)
return out0