You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

34 lines
1.1 KiB
Python

2 years ago
import torch
import torch.nn as nn
import pandas as pd
import numpy as np
from sklearn.preprocessing import MinMaxScaler
input_size = 1
hidden_size = 1
num_layers = 2
output_size = 1
class MLP(nn.Module):
def __init__(self, input_size=1, hidden_size=1, num_layers=2, output_size=1):
super(MLP, self).__init__()
# self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
# self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
# self.lstm=nn.RNN(input_size, hidden_size, num_layers, batch_first=True)
self.fc0=nn.Linear(input_size,hidden_size,bias=False)
self.relu = nn.ReLU()
self.fc = nn.Linear(hidden_size, output_size)
nn.init.constant_(self.fc0.weight,0.78)
nn.init.xavier_uniform_(self.fc.weight)
nn.init.zeros_(self.fc.bias)
def forward(self, x):
# out, _ = self.lstm(x)
out0=self.fc0(x)
# out1=self.relu(out0)
# print(f"out{out[0]}")
# print(f"out{out[-1]}")
# out2 = self.fc(out1)
return out0